Intermediary test

29.11.2018

Group A

1. Solve the problem

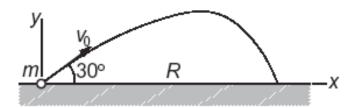
$$u''-(u')^2-u^2+u+1=0$$
, $u(0)=0.5$, $u(pi)=-0.5$

using the finite difference method.

(compare your results using routine bvp4c from Matlab)

2. Solve numericaly using an efficient method

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad 1 < x < 2, \quad 0 < y < 1;$$


$$u(x, 0) = 2 \ln x$$
, $u(x, 1) = \ln(x^2 + 1)$, $1 \le x \le 2$;

$$u(1, y) = \ln(y^2 + 1), \quad u(2, y) = \ln(y^2 + 4), \quad 0 \le y \le 1.$$

and compare the results to the actual solution $u(x, y) = \ln(x^2 + y^2)$.

Group B

1.

A ball of mass m=0.25 kg is launched with the velocity $v_0=50$ m/s in the direction shown. Assuming that the aerodynamic drag force acting on the ball is $F_D=C_Dv^{3/2}$, the differential equations describing the motion are

$$\ddot{x} = -\frac{C_D}{m} \dot{x} v^{1/2}$$
 $\ddot{y} = -\frac{C_D}{m} \dot{y} v^{1/2} - g$

where $v = \sqrt{\dot{x}^2 + \dot{y}^2}$. Determine the time of flight and the range R. Use $C_D = 0.03 \text{ kg/(m \cdot s)}^{1/2}$ and $g = 9.80665 \text{ m/s}^2$.

(use Runge-Kutta method; compare the results with the ode45 routine from Matlab)

2.

Solve the initial boundary value problem for $u_t = u_{xx}$ on $-1 \le x \le 1$ for $0 \le t \le 0.5$ with initial data given by

$$u_0(x) = \begin{cases} 1 - |x| & \text{for } |x| < \frac{1}{2}, \\ \frac{1}{4} & \text{for } |x| = \frac{1}{2}, \\ 0 & \text{for } |x| > \frac{1}{2}. \end{cases}$$

Use the boundary conditions

$$u(t,-1) = u^*(t,-1)$$
 and $u_x(t,1) = 0$,

where $u^*(t, x)$ is the exact solution given by

$$u^*(t,x) = \frac{3}{8} + \sum_{\ell=0}^{\infty} \left(\frac{(-1)^{\ell}}{\pi (2\ell+1)} + \frac{2}{\pi^2 (2\ell+1)^2} \right) \cos \pi (2\ell+1) x \ e^{-\pi^2 (2\ell+1)^2 t}$$

$$+ \sum_{m=0}^{\infty} \frac{\cos 2\pi (2m+1) x}{\pi^2 (2m+1)^2} e^{-4\pi^2 (2m+1)^2 t}.$$